Temporal Feature Selection for Optimizing Spatial Filters in a P300 Brain-Computer Interface
نویسندگان
چکیده
For the creation of efficient and robust BrainComputer Interfaces (BCIs) based on the detection of eventrelated potentials (ERPs) in the electroencephalogram (EEG), spatial filtering has been shown as being an important step for feature extraction and reduction. Current spatial filtering methods for ERP enhancement typically consider a global approach by enhancing the signal on a predefined time-segment that contains all the different ERP components, which can have different spatial distributions. Because several ERP components occur, it is likely that they have different neural sources, and require specific signal processing methods. We propose to use a spatial filtering method based on the maximization of the signalto-signal plus noise ratio, and compare different approaches to determine the best time segment for optimizing the choice of the spatial filters. The evaluation was carried out on data recorded of ten healthy subjects during a P300 speller experiment. The results support the conclusion that spatial filters based on the global approach provide the best solution and outperform local and hybrid approaches.
منابع مشابه
A review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملControl of a 2-DoF robotic arm using a P300-based brain-computer interface
In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کامل